Introduction
This vignette serves two distinct, but related, purposes:
It documents general best practices for using tidyr in a package, inspired by using ggplot2 in packages.
It describes migration patterns for the transition from tidyr v0.8.3 to v1.0.0. This release includes breaking changes to
nest()
andunnest()
in order to increase consistency within tidyr and with the rest of the tidyverse.
Before we go on, we’ll attach the packages we use, expose the version of tidyr, and make a small dataset to use in examples.
library(tidyr)
library(dplyr, warn.conflicts = FALSE)
library(purrr)
packageVersion("tidyr")
#> [1] '1.3.1.9000'
mini_iris <- as_tibble(iris)[c(1, 2, 51, 52, 101, 102), ]
mini_iris
#> # A tibble: 6 × 5
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 7 3.2 4.7 1.4 versicolor
#> 4 6.4 3.2 4.5 1.5 versicolor
#> 5 6.3 3.3 6 2.5 virginica
#> 6 5.8 2.7 5.1 1.9 virginica
Using tidyr in packages
Here we assume that you’re already familiar with using tidyr in
functions, as described in vignette("programming.Rmd")
.
There are two important considerations when using tidyr in a
package:
- How to avoid
R CMD CHECK
notes when using fixed variable names. - How to alert yourself to upcoming changes in the development version of tidyr.
Fixed column names
If you know the column names, this code works in the same way regardless of whether its inside or outside of a package:
mini_iris %>% nest(
petal = c(Petal.Length, Petal.Width),
sepal = c(Sepal.Length, Sepal.Width)
)
#> # A tibble: 3 × 3
#> Species petal sepal
#> <fct> <list> <list>
#> 1 setosa <tibble [2 × 2]> <tibble [2 × 2]>
#> 2 versicolor <tibble [2 × 2]> <tibble [2 × 2]>
#> 3 virginica <tibble [2 × 2]> <tibble [2 × 2]>
But R CMD check
will warn about undefined global
variables (Petal.Length
, Petal.Width
,
Sepal.Length
, and Sepal.Width
), because it
doesn’t know that nest()
is looking for the variables
inside of mini_iris
(i.e. Petal.Length
and
friends are data-variables, not env-variables).
The easiest way to silence this note is to use all_of()
.
all_of()
is a tidyselect helper (like
starts_with()
, ends_with()
, etc.) that takes
column names stored as strings:
mini_iris %>% nest(
petal = all_of(c("Petal.Length", "Petal.Width")),
sepal = all_of(c("Sepal.Length", "Sepal.Width"))
)
#> # A tibble: 3 × 3
#> Species petal sepal
#> <fct> <list> <list>
#> 1 setosa <tibble [2 × 2]> <tibble [2 × 2]>
#> 2 versicolor <tibble [2 × 2]> <tibble [2 × 2]>
#> 3 virginica <tibble [2 × 2]> <tibble [2 × 2]>
Alternatively, you may want to use any_of()
if it is OK
that some of the specified variables cannot be found in the input
data.
The tidyselect package
offers an entire family of select helpers. You are probably already
familiar with them from using dplyr::select()
.
Continuous integration
Hopefully you’ve already adopted continuous integration for your
package, in which R CMD check
(which includes your own
tests) is run on a regular basis, e.g. every time you push changes to
your package’s source on GitHub or similar. The tidyverse team currently
relies most heavily on GitHub Actions, so that will be our example.
usethis::use_github_action()
can help you get started.
We recommend adding a workflow that targets the devel version of tidyr. When should you do this?
Always? If your package is tightly coupled to tidyr, consider leaving this in place all the time, so you know if changes in tidyr affect your package.
Right before a tidyr release? For everyone else, you could add (or re-activate an existing) tidyr-devel workflow during the period preceding a major tidyr release that has the potential for breaking changes, especially if you’ve been contacted during our reverse dependency checks.
Example of a GitHub Actions workflow that tests your package against the development version of tidyr:
on:
push:
branches:
- main
pull_request:
branches:
- main
name: R-CMD-check-tidyr-devel
jobs:
R-CMD-check:
runs-on: macOS-latest
steps:
- uses: actions/checkout@v4
- uses: r-lib/actions/setup-r@v2
- name: Install dependencies
run: |
install.packages(c("remotes", "rcmdcheck"))
remotes::install_deps(dependencies = TRUE)
remotes::install_github("tidyverse/tidyr")
shell: Rscript {0}
- name: Check
run: rcmdcheck::rcmdcheck(args = "--no-manual", error_on = "error")
shell: Rscript {0}
GitHub Actions are an evolving landscape, so you can always mine the workflows for tidyr itself (tidyverse/tidyr/.github/workflows) or the main r-lib/actions repo for ideas.
tidyr v0.8.3 -> v1.0.0
v1.0.0 makes considerable changes to the interface of
nest()
and unnest()
in order to bring them in
line with newer tidyverse conventions. I have tried to make the
functions as backward compatible as possible and to give informative
warning messages, but I could not cover 100% of use cases, so you may
need to change your package code. This guide will help you do so with a
minimum of pain.
Ideally, you’ll tweak your package so that it works with both tidyr 0.8.3 and tidyr 1.0.0. This makes life considerably easier because it means there’s no need to coordinate CRAN submissions - you can submit your package that works with both tidyr versions, before I submit tidyr to CRAN. This section describes our recommend practices for doing so, drawing from the general principles described in https://design.tidyverse.org/changes-multivers.html.
If you use continuous integration already, we strongly recommend adding a build that tests with the development version of tidyr; see above for details.
This section briefly describes how to run different code for different versions of tidyr, then goes through the major changes that might require workarounds:
If you’re struggling with a problem that’s not described here, please reach out via github or email so we can help out.
Conditional code
Sometimes you’ll be able to write code that works with v0.8.3 and v1.0.0. But this often requires code that’s not particularly natural for either version and you’d be better off to (temporarily) have separate code paths, each containing non-contrived code. You get to re-use your existing code in the “old” branch, which will eventually be phased out, and write clean, forward-looking code in the “new” branch.
The basic approach looks like this. First you define a function that
returns TRUE
for new versions of tidyr:
tidyr_new_interface <- function() {
packageVersion("tidyr") > "0.8.99"
}
We highly recommend keeping this as a function because it provides an obvious place to jot any transition notes for your package, and it makes it easier to remove transitional code later on. Another benefit is that the tidyr version is determined at run time, not at build time, and will therefore detect your user’s current tidyr version.
Then in your functions, you use an if
statement to call
different code for different versions:
my_function_inside_a_package <- function(...)
# my code here
if (tidyr_new_interface()) {
# Freshly written code for v1.0.0
out <- tidyr::nest(df, data = any_of(c("x", "y", "z")))
} else {
# Existing code for v0.8.3
out <- tidyr::nest(df, x, y, z)
}
# more code here
}
If your new code uses a function that only exists in tidyr 1.0.0, you
will get a NOTE
from R CMD check
: this is one
of the few notes that you can explain in your CRAN submission comments.
Just mention that it’s for forward compatibility with tidyr 1.0.0, and
CRAN will let your package through.
New syntax for nest()
What changed:
- The to-be-nested columns are no longer accepted as “loose parts”.
- The new list-column’s name is no longer provided via the
.key
argument. - Now we use a construct like this:
new_col = <something about existing cols>
.
Why it changed:
The use of
...
for metadata is a problematic pattern we’re moving away from. https://design.tidyverse.org/dots-data.html-
The
new_col = <something about existing cols>
construct lets us create multiple nested list-columns at once (“multi-nest”).
Before and after examples:
# v0.8.3
mini_iris %>%
nest(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, .key = "my_data")
# v1.0.0
mini_iris %>%
nest(my_data = c(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width))
# v1.0.0 avoiding R CMD check NOTE
mini_iris %>%
nest(my_data = any_of(c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")))
# or equivalently:
mini_iris %>%
nest(my_data = !any_of("Species"))
If you need a quick and dirty fix without having to think, just call
nest_legacy()
instead of nest()
. It’s the same
as nest()
in v0.8.3:
if (tidyr_new_interface()) {
out <- tidyr::nest_legacy(df, x, y, z)
} else {
out <- tidyr::nest(df, x, y, z)
}
New syntax for unnest()
What changed:
The to-be-unnested columns must now be specified explicitly, instead of defaulting to all list-columns. This also deprecates
.drop
and.preserve
..sep
has been deprecated and replaced withnames_sep
.unnest()
uses the emerging tidyverse standard to disambiguate duplicated names. Usenames_repair = tidyr_legacy
to request the previous approach.-
.id
has been deprecated because it can be easily replaced by creating the column of names prior tounnest()
, e.g. with an upstream call tomutate()
.
Why it changed:
The use of
...
for metadata is a problematic pattern we’re moving away from. https://design.tidyverse.org/dots-data.htmlThe changes to details arguments relate to features rolling out across multiple packages in the tidyverse. For example,
ptype
exposes prototype support from the new vctrs package.names_repair
specifies what to do about duplicated or non-syntactic names, consistent with tibble and readxl.
Before and after:
nested <- mini_iris %>%
nest(my_data = c(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width))
# v0.8.3 automatically unnests list-cols
nested %>% unnest()
# v1.0.0 must be told which columns to unnest
nested %>% unnest(any_of("my_data"))
If you need a quick and dirty fix without having to think, just call
unnest_legacy()
instead of unnest()
. It’s the
same as unnest()
in v0.8.3:
if (tidyr_new_interface()) {
out <- tidyr::unnest_legacy(df)
} else {
out <- tidyr::unnest(df)
}
nest()
preserves groups
What changed:
-
nest()
now preserves the groups present in the input.
Why it changed:
- To reflect the growing support for grouped data frames, especially
in recent releases of dplyr. See, for example,
dplyr::group_modify()
,group_map()
, and friends.
If the fact that nest()
now preserves groups is
problematic downstream, you have a few choices:
Apply
ungroup()
to the result. This level of pragmatism suggests, however, you should at least consider the next two options.You should never have grouped in the first place. Eliminate the
group_by()
call and specify which columns should be nested versus not nested directly innest()
.Adjust the downstream code to accommodate grouping.
Imagine we used group_by()
then nest()
on
mini_iris
, then we computed on the list-column outside
the data frame.
(df <- mini_iris %>%
group_by(Species) %>%
nest())
#> # A tibble: 3 × 2
#> # Groups: Species [3]
#> Species data
#> <fct> <list>
#> 1 setosa <tibble [2 × 4]>
#> 2 versicolor <tibble [2 × 4]>
#> 3 virginica <tibble [2 × 4]>
(external_variable <- map_int(df$data, nrow))
#> [1] 2 2 2
And now we try to add that back to the data post hoc:
df %>%
mutate(n_rows = external_variable)
#> Error in `mutate()`:
#> ℹ In argument: `n_rows = external_variable`.
#> ℹ In group 1: `Species = setosa`.
#> Caused by error:
#> ! `n_rows` must be size 1, not 3.
This fails because df
is grouped and
mutate()
is group-aware, so it’s hard to add a completely
external variable. Other than pragmatically ungroup()
ing,
what can we do? One option is to work inside the data frame, i.e. bring
the map()
inside the mutate()
, and design the
problem away:
df %>%
mutate(n_rows = map_int(data, nrow))
#> # A tibble: 3 × 3
#> # Groups: Species [3]
#> Species data n_rows
#> <fct> <list> <int>
#> 1 setosa <tibble [2 × 4]> 2
#> 2 versicolor <tibble [2 × 4]> 2
#> 3 virginica <tibble [2 × 4]> 2
If, somehow, the grouping seems appropriate AND working inside the
data frame is not an option, tibble::add_column()
is
group-unaware. It lets you add external data to a grouped data
frame.
df %>%
tibble::add_column(n_rows = external_variable)
#> # A tibble: 3 × 3
#> # Groups: Species [3]
#> Species data n_rows
#> <fct> <list> <int>
#> 1 setosa <tibble [2 × 4]> 2
#> 2 versicolor <tibble [2 × 4]> 2
#> 3 virginica <tibble [2 × 4]> 2
nest_()
and unnest_()
are defunct
What changed:
Why it changed:
- We are transitioning the whole tidyverse to the powerful tidy eval
framework. Therefore, we are gradually removing all previous solutions:
- Specialized standard evaluation versions of functions, e.g.,
foo_()
as a complement tofoo()
. - The older lazyeval framework.
- Specialized standard evaluation versions of functions, e.g.,
Before and after:
# v0.8.3
mini_iris %>%
nest_(
key_col = "my_data",
nest_cols = c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")
)
nested %>% unnest_(~ my_data)
# v1.0.0
mini_iris %>%
nest(my_data = any_of(c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")))
nested %>% unnest(any_of("my_data"))